1 ) \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{3}{10} & - \frac{1}{5} \end{bmatrix} 2 ) 1 3 ) -6 4 ) 4A 5 ) 3 6 ) 1 7 ) none of these 8 ) -4 9 ) $e^x (sin(2x) + 2cos(2x))$ 10 ) $\frac{2}{3x}$ 11 ) $\frac{1}{6} $ or -1 12 ) $\frac{x^2}{3} - x - 2 tan^{-1}x + c$ 13 ) 2 14 ) -2 15 ) $e^x+e^{-y} + \frac{x^3}{3}=c$ 16 ) $sin \, \frac{\theta}{2}$ 17 ) (3, -1, -1) 18 ) 0.72 19 ) $\frac{\pi}{4\sqrt{2}} log|\frac{\sqrt{2}+1}{\sqrt{2}-1}|$ 20 ) $\frac{2}{3}(x^2+4x+3)^\frac{3}{2}$ 21 ) $\frac{1}{2\sqrt{2}} tan^{-1}\frac{x^2-4}{2\sqrt{2} \, x}+c$ 22 ) $-\frac{\pi}{3} \le x \le \frac{\pi}{3} $ 23 ) a=-2, b=-5 24 ) $\frac{4}{27}\pi h^3tan^2 \theta$ 25 ) $\frac{2}{5}$ 26 ) (2, 0) 27 ) x 28 ) x = -3, y = 2, z = -1 29 ) (-1, -1, -1) 30 ) 27 sq. units
1 ) \begin{bmatrix} -1 & 2 \\ 1 & 4 \\ \end{bmatrix} 2 ) \begin{bmatrix} 6 & 0 \\ 0 & 6 \\ \end{bmatrix} 3 ) 12, -2 4 ) x=2, y=-8 5 ) -5 6 ) -1 7 ) -1 8 ) -3 9 ) $12x^3 - 6x^2 + 10x - 7$ 10 ) -tan t 11 ) $\frac{80}{89}$ 12 ) sec x - cosec x + c 13 ) 4 14 ) 4 cm 15 ) $\frac{-e^{-by}}{b}=\frac{e^{ax}}{a} + c$ 16 ) 7 17 ) $cos^{-1}\frac{1}{\sqrt{2}}$ 18 ) $\frac{1}{2}$ 19 ) $\frac{\pi^2}{2ab}$ 20 ) $\frac{2}{9}(1+x^3)^\frac{3}{2}-\frac{2}{3}(1+x^3)^\frac{1}{2}+c$ 21 ) $2\sqrt{2x^2 + 2x - 3} + \frac{1}{\sqrt{2}} log|x + \frac{1}{2} +\sqrt{x^2 + x - \frac{3}{2}} | +c$ 22 ) $- \infty \lt x \lt 2 $ and $6 \lt x \lt \infty $ 23 ) (2, -9) 24 ) $\frac{25\pi}{\pi +4}$ and $\frac{100}{\pi +4}$ 25 ) $\frac{1}{5}$ 26 ) x=2, y=6, z=36 27 ) $\frac{1}{2} log_{10} \frac{1+x}{1-x}$ 28 ) x = 1, y = 2, z = 3 29 ) $\frac{13}{12} \sqrt{6}$, $(-\frac{1}{12}, \frac{25}{12},- \frac{2}{12})$ 30 ) $\frac{a^2}{12}(3\pi-8) sq. \, units$
1 ) [14] 2 ) \begin{bmatrix} -3 & 2 \\ \frac{5}{2} & - \frac{3}{2} \\ \end{bmatrix} 3 ) 1 4 ) $A^2 - AB +BA + B^2 $ 5 ) 2 6 ) 3 7 ) $\frac{1}{2}$ 8 ) The limit does not exist. 9 ) $3(2x - 1)^2 (x + 2)^2 + 2(2x - 1)^3 2(x + 2)$ 10 ) 1 11 ) 0 12 ) $\frac{1}{2} sin \, x - \frac{1}{10} sin \, 5x +c $ 13 ) $\frac{1}{2}$ 14 ) $10 \pi cu cm$ 15 ) $2^x+2^{-y}=c$ 16 ) $\frac{-3}{2}$ 17 ) (-1, 4, 3) 18 ) $\frac{37}{256}$ 19 ) $2-\sqrt{2}$ 20 ) $\frac{log|a^2 \, cos^2x + b^2 sin^2x|}{b^2 - a^2} +c$ 21 ) $e^x cot \, 2x+c$ 22 ) $2 \lt x \lt 6$ 23 ) $$4x-3\sqrt{2}y-2\sqrt{2}=0$$ 24 ) $\frac{\pi}{3}$ 25 ) $\frac{2}{3}$ 26 ) both bounded and unbounded space 27 ) $f^{-1}(x)= \frac{1+\sqrt{1+4log_2 x}}{2}$. 28 ) x = 3, y = 0, z = 2 29 ) (2, 4, -3) 30 ) $\frac{4}{3}$ sq. units$
1 ) \begin{bmatrix} 2 & -1 \\ 2 & 4 \\ 3 & 6 \end{bmatrix} 2 ) $B^{-1}A^{-1}$ 3 ) $2a^3b^3c^3$ 4 ) 25 5 ) $\frac{1}{2}$ 6 ) none of these 7 ) $\frac{3}{4}$ 8 ) 4 9 ) $e^x sin(x) + e^x cos(x)$ 10 ) 1 11 ) $\frac{3}{5}$ 12 ) $\frac{ax}{c} + \frac{bc - ad}{c^2} log|cx + d|$ + C 13 ) $\int_{0}^a \, [f(x)+f(-x)] \, dx$ 14 ) $]\frac{5}{3}, 3[$ 15 ) $y(x^2 + 1)=c$ 16 ) $\frac{\pi}{6}$ 17 ) $-\frac{10}{7}$ 18 ) 0.3 19 ) $\frac{\pi}{4}$ 20 ) $\frac{2}{15}x \sqrt{x} (5-3x) + c$ 21 ) $\frac{1}{2}(x^2-1)log|x+1| - \frac{1}{4}x^2 +\frac{1}{2}x +c$ 22 ) $- \infty \lt x \lt 1$ 23 ) $8k^2=1$ 24 ) $tan^{-1} \sqrt{2}$ 25 ) $\frac{37}{256}$ 26 ) 440 27 ) $\alpha=-1$ 28 ) x = 2, y = -1, z = 4 29 ) (1, 0, 7) 30 ) $\frac{9}{8}$ sq. units
1 ) 8 2 ) |A|=0 and |B|=0 3 ) 1 4 ) $\frac{33}{2}$ 5 ) 0 6 ) 0 7 ) R - {3} 8 ) 0 9 ) -tan x 10 ) $\frac{3t^2 - 5}{6t + 2}$ 11 ) $\frac{24}{25}$ 12 ) $\frac{1}{4}sin^4x - \frac{1}{6}sin^6x + c$ 13 ) 0 14 ) 15 m/s 15 ) $log(1+y)=x-\frac{x^2}{2} +c$ 16 ) $\frac{5}{\sqrt{6}}$ 17 ) $cos^{-1}\frac{1}{3}$ 18 ) $\frac{5}{8}$ 19 ) $\frac{\pi}{8} log \, 2$ 20 ) $sin^{-1}x-\sqrt{1-x^2} +c$ 21 ) $\frac{1}{2} \frac{1+x^2}{(1-x)^2} +tan^{-1}x +c$ 22 ) -2 23 ) (3, 2), (-1, 2) 24 ) $\frac{\pi}{2}$, Area=$\frac{1}{2}ab$ 25 ) 0.22 26 ) 15 27 ) {0, -1} 28 ) x = 2, y = 1, z = 3 29 ) x + y + z = 0 30 ) $\frac{4}{3}$ sq. units
1 ) \begin{bmatrix} 15 & -6 \\ -8 & 21 \end{bmatrix} 2 ) adj A 3 ) \begin{bmatrix} 53 & 0 \\ 0 & 53 \\ \end{bmatrix} 4 ) AB = BA = I 5 ) -1 6 ) f(x) is discontinuous at x = 0 7 ) f(x) is not differentiable at $ \, x = n \pi, \, x \in Z $ 8 ) 1 9 ) 2cos(2x) - 3sin(3x) 10 ) $\frac{1}{te^t}$ 11 ) $\frac{\pi}{4}$ 12 ) $\frac{1}{2} (log \, tan \, x)^2 + c$ 13 ) 0 14 ) $3.2 \pi cm^3/sec$ 15 ) $4xy = x^4 + c$ 16 ) $\frac{\pi}{2}$ 17 ) 3 : 4 18 ) 0.1 19 ) $\frac{\pi}{8} \, log \, 2 $ 20 ) $-\frac{2}{b^2}[log|a+b \, cos \, x|+\frac{a}{a+b \, cos \, x}]+c$ 21 ) $sin^{-1}x + \sqrt{1-x^2}+c$ 22 ) $[0, \frac{\pi}{4}]$ 23 ) parallel 24 ) $\frac{c^3}{6\sqrt{3}}$ 25 ) $\frac{5}{9}$ 26 ) none of these 27 ) $f^{-1}(x)=\frac{4x+7}{2}$ 28 ) x = 2, y = 3, z = -1 29 ) (-1, -7, -4) 30 ) $\frac{21}{2}$ sq. units
1 ) \begin{bmatrix} 2 & 3 & 6 \\ 4 & 6 & 8 \\ 6 & 9 & 12 \\ \end{bmatrix} 2 ) $\frac{1}{|A|}$ 3 ) 9 4 ) adj(B) adj(A) 5 ) 0 6 ) g(x) is discontinuous function 7 ) continuous everywhere but not differentiable at x = 0 8 ) $\frac{1}{2}$ 9 ) $\frac{2}{2x + 1} - e^x$ 10 ) -1 11 ) 0 12 ) $2 \sqrt{tan \, x} +c$ 13 ) -1 14 ) -0.32 15 ) $sin^{-1}y+sin^{-1}x=c$ 16 ) $\frac{41}{2}$ sq units 17 ) 20x + 23y + 26z = 69 18 ) $\frac{1}{3}$ 19 ) $\frac{\pi}{4}$ 20 ) $\frac{1}{\sqrt{2}}tan^{-1}[\frac{1}{\sqrt{2}}(x-\frac{1}{x})]+c$ 21 ) $\frac{x}{log \, x} +c$ 22 ) increasing in $0 \lt x \lt \frac{3\pi}{4} $ and $\frac{3\pi}{4} \lt x \lt 2\pi $ ; decreasing in $\f 23 ) (1, 2), (1, -2) 24 ) $500 \pi cm^3$ 25 ) $\frac{5}{9}$ 26 ) 14 27 ) either a=1 and b=0 or a=-1 and $b \, \in \, R$ 28 ) x = 1, y = -1, z = -1 29 ) 7 units 30 ) $(\frac{\pi ab}{4} -\frac{ab}{2})$ sq. units
1 ) \begin{bmatrix} cos 2 \alpha & sin 2 \alpha \\ -sin 2 \alpha & cos 2 \alpha \\ \end{bmatrix} 2 ) $\frac{1}{k} .A^{-1}$ 3 ) 0 4 ) $A^2 - AB - BA + B^2$ 5 ) 0 6 ) $\frac{1}{2}$ 7 ) none of these 8 ) 3 9 ) $\frac{1}{2} (x^2 + 4x)^{-\frac{1}{2}} (2x + 4) - 2x$ 10 ) $\frac{4}{25}$ 11 ) $\frac{17}{6}$ 12 ) $2 \sqrt{e^x - 1} - 2 tan^{-1}\sqrt{e^x - 1} + c$ 13 ) $\frac{1}{6}$ 14 ) $] 0, \frac{3\pi}{4}[$ 15 ) $ \sqrt{1+y^2} +\sqrt{1+x^2} = c $ 16 ) $\sqrt{3}$ 17 ) $cos^{-1}\frac{8\sqrt{3}}{15}$ 18 ) independent 19 ) $\frac{16\sqrt{2}}{15}$ 20 ) $\frac{\pi x}{4} - \frac{x^2}{4} + c$ 21 ) $\frac{5}{16} log|\frac{x-2}{x+2}| - \frac{7}{4(x-2)} +c$ 22 ) $1 \le x \lt \infty $ 23 ) (2a, a) 24 ) $\frac{16}{6-\sqrt{3}}$m 25 ) $\frac{37}{56}$ 26 ) 120 27 ) neither one-one nor onto. 28 ) x = 1, y = 2, z = 3 29 ) (-3, 5, 2) 30 ) $2(\sqrt{2} -1)$ sq. units
1 ) \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} 2 ) nilpotent 3 ) -400 4 ) a skew symmetric square matrix 5 ) 0 6 ) discontinuous at only one point 7 ) $-1 \, \le \, x \, \le \, 4 \,$ 8 ) 2 9 ) $(6x + 2) e^{3x^2 + 2x}$ 10 ) $cot \frac{t}{2}$ 11 ) $\frac{1}{2}$ 12 ) $x cos \alpha +(sin \alpha) log|sin(x-\alpha)| + c$ 13 ) 2 14 ) 0.5 m/s 15 ) x cos y = c 16 ) $sin \, \frac{\theta}{2}$ 17 ) 2 18 ) $\frac{5}{9}$ 19 ) $\frac{\pi}{2} - log \, 2$ 20 ) $tan^{-1}\frac{tan \, x -1}{\sqrt{2 \, tan \, x}}+c$ 21 ) $-\frac{sin^{-1}x}{x}+log| \frac{1}{x} - \frac{\sqrt{1-x^2}}{x}|$ 22 ) inc in $(- \infty, -1) $; dec in $(-1, \infty) $ 23 ) $( \frac{7}{4}, \, \frac{1}{4})$ 24 ) $75\sqrt{3}cm^2$. 25 ) $\frac{25}{52}$ 26 ) None of these 27 ) $Domain=(2, \, \infty )$ and $Range= x \in R^+$ 28 ) $x = \frac{1}{2}$ , y = 0, $z = \frac{1}{2}$ 29 ) 13 30 ) $\frac{1}{3}$ sq. units
1 ) \begin{bmatrix} 0 & \frac{1}{2} & 2 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \end{bmatrix} 2 ) idempotent 3 ) $\pm 2 \sqrt{3}$ 4 ) x=-7, y=-3 or x=3, y=-3 5 ) $a^2+b^2+c^2+d^2$ 6 ) 1 7 ) continuous at non-integer points only 8 ) $-\infty$ 9 ) $\frac{4x^3 + 2x}{(1 + x^2)^2}$ 10 ) $\frac{3}{4t}$ 11 ) $100^o$ 12 ) $-\frac{1}{2}cos(2x+1) + \frac{1}{6}cos^3(2x+1) + c$ 13 ) $\frac{\pi}{4}$ 14 ) 6% 15 ) $y=2tan \frac{x}{2}-x+c$ 16 ) $\vec{a} \perp \vec{b}$ 17 ) $-\frac{10}{7}$ 18 ) $\frac{3}{5}$ 19 ) $\frac{\pi}{4}$ 20 ) cos(a-b) log|sin(x+b)| - xsin(a-b) +c 21 ) $\frac{3x}{8}+\frac{sin \, 4x}{32}+\frac{sin \, 2x}{4}+c$ 22 ) increasing in $0 \lt x \lt \infty$ ; decreasing in $ - \infty \lt x \lt 0$ 23 ) $tan^{-1}3$ 24 ) 1024 cu. cm. 25 ) $\frac{36}{61}$ 26 ) 31 27 ) x 28 ) x = 1, y = 2, z = -1 29 ) $3\sqrt{30}$ units, $\frac{x-3}{2}=\frac{y-8}{5}=\frac{z-3}{-1}$ 30 ) $\frac{\pi -2}{4} sq.units$